Cite Your Sources

How to Handle Multiple Sources of Flood Risk

The ability to simplify means to eliminate the unnecessary so that the necessary may speak.

Hans Hofmann

Overview

Controlling Event

Visualize multiple risk sources near the coast and determine which source caused the highest water surface elevations

Combined Probability

Quantify component sources of risk in an urban setting

Regulatory Mapping

Process "messy" 2D rain-on-mesh results for FEMA regulatory mapping

Controlling Event

Visualize multiple risk sources near the coast and determine which source caused the highest water surface elevations

Coastal Complexities

- Ten miles from the coast with the potential for 5+ feet storm surge
- Lower Brazos River overflow per upstream drainage of 40,000 sqmi. (8,000 unregulated)
- Local pluvial risks with Atlas 14 500yr, 24-hr total of 24 inches

HDF Data Extraction

Combined Probability

Quantify component sources of risk in an urban setting

Flood Frequency and Extreme Value Analysis, Guidance Document 76

https://www.fema.gov/sites/default/files/documents/Coastal_Flood_Fre guency_and_Extreme_Value_Analysis_Guidance_Nov_2023.pdf

18

Fluvial Risk Α Β 6" - 18" > 18"

Depth

Pluvial Risk Α Β 6" - 18" > 18"

Depth

Risk Communication

- Distinguish between each source to frame expectations for project benefits
- Emphasize residual risk; one project (usually) does not fix it all

Regulatory Mapping

Process "messy" 2D rain-on-mesh results for FEMA regulatory mapping

FEMA Guidelines and Standards

- SID 112 "... all floodplain boundaries ... shall pass the Floodplain Boundary Standard."
- SID 628 "... all raster datasets align with the underlying model information used to develop the associated regulatory products ..."

Background

- Pilot study of 3 basins
- Once methodologies are determined they will be applied to a larger area
- Results need to be easily reproduced
- Minimize manual effort to maximize budget

Raw Results

- 2D ROM results produce lots of detail
- Detail is valuable, but not always useful

Raw Results

- 2D ROM results produce lots of detail
- Detail is valuable, but not always useful
- How do we parse out rasters by their flooding source?

Raw Results

4	4	4	4	-3	7
4	4	7	7	7	7
5	5	7	7	6	7
5	5	5	5	5	6
7	7	5	5	5	5
7	0	5	2		

Nibble Background

Value = NoData

InRas1

Mask_Ras

OutRas

Nibble Challenges

- Need a mask that does not include pluvial flooding
- Final rasters still need to align with the underlying model
- Minimize manual clean-up

Nibble Challenges

- Difficult to identify mask areas to filter out
- Searched for areas where there was >1' elevation change

Nibble Challenges

- Difficult to identify mask areas to filter out
- Searched for areas where there was >1' elevation change
- Lots of effort
- Not consistent

Approach Overview

4	4	4	4	-3	7
4	4	7	7	7	7
5	5	7	7	6	7
5	5	5	5	5	6
7	7	5	5	5	5
7	0	5	2		

4	4	4	4	-3	-3
4	4	4	4	-3	-3
7	4	4	4	6	6
7	7	2	2	6	6
7	7	2	2		5
7	7	2	2		

InRas1

Mask_Ras

OutRas

Approach Overview

- Use the centerline to pull elevation values from the WSEL
- Nibble outwards in series using the extent of the previous results

5. Nibble 1'

1. Centerline WSELs

6. Nibble Underground

2. Nibble 1/10'

3. Nibble 2/10'

7. Reconcile to Ground

Results

- Eliminates results from pluvial sources and unstudied tributaries
- Eliminates "cupping" effects from raw RAS Mapper outputs
- Ensures consistency between rasters, regulatory floodplains, profiles, and BFEs
- Leverages readily available GIS tools

QC

Raster differences compared to raw raster output highlight where secondary profiles needed

Conclusions

Controlling Event

Visualize the primary source of flooding to aid risk communication and alternative identification

Leverage raw HDF output using Python

Combined Probability

Quantify each source to frame project benefits and emphasize residual risk

Leverage existing FEMA framework

Regulatory Mapping

Process "messy" 2D rain-on-mesh results for FEMA regulatory mapping

Leverage ArcGIS Nibble tool with constraints

Mark Pauls mark.pauls@freese.com

Thank you

Rob Wood robert.wood@freese.com

